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It has been demonstrated recently [G.V. Stupakov and S.S. Kurennoy, Phys. Rev. E 49, 794
(1994)] that a single small discontinuity (such as an enlargement or a hole) on a smooth waveguide
can result in the appearance of trapped electromagnetic modes with frequencies slightly below the
waveguide cutoff frequencies. The present paper studies a similar phenomenon for a waveguide with
many small discontinuities, which is a good model for the vacuum chamber of large accelerators.
Frequencies of trapped modes and their contributions to the coupling impedance are calculated.
The frequencies for the cases of a few discontinuities or a periodic structure coincide well with those
from numerical simulations. The trapped modes produce sharp resonance peaks of the coupling

impedance near the cutoff frequencies.

The magnitude of these peaks, as well as the existence

itself of a trapped mode, strongly depends on the distribution of discontinuities, or on the distance
between them if a regular array is considered. The impedance in the extreme case can be as large
as N? times that for a single discontinuity, where N is the number of discontinuities.

PACS number(s): 41.75.—i, 41.20.—q

I. INTRODUCTION

Previous computer studies of cavities coupled to
a beam pipe indicated that the impedance of small
chamber enlargements exhibits sharp narrow peaks
at frequencies close to the cutoff frequencies of
the waveguide; see references cited in [1-4]. For
the case of a single small discontinuity, such as
an enlargement or a hole, on a smooth wave-
guide it was demonstrated [1] that these peaks can be
attributed to trapped modes localized near the disconti-
nuity. The existence of a trapped mode depends on the
relation between the conductivity of the chamber walls
and a typical size of the discontinuity, and in the limit of
perfectly conducting walls the trapped modes exist even
for very small perturbations.

This phenomenon can be dangerous for the beam sta-
bility in large superconducting proton colliders such as
Large Hadron Collider (LHC), where the design antici-
pates a thermal screen (liner) inside the beam pipe [5].
The function of the liner is to screen the cold walls of the
vacuum chamber from synchrotron radiation in order to
prevent wall heating and photodesorption of molecules
stuck to the cold wall. The liner walls contain many small
pumping holes, which work as a distributed cryopump to
provide high vacuum in the beam region, and have an
inner copper coating to slow down the resistive wall in-
stability. In such a structure with many small disconti-
nuities and very high wall conductivity at cryogenic tem-
peratures, the trapped modes can exist and contribute
significantly to the beam-chamber coupling impedances.

The trapped modes in a waveguide with many discon-
tinuities are considered in the present paper. In Sec. II
we present some results for the trapped modes produced
by a single small discontinuity. Section III is devoted to
the case of a finite number of discontinuities and Sec. IV
deals with periodic arrays. Estimates of the coupling
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impedance near the cutoff frequency for liners are given
in Sec. V.

II. A SINGLE DISCONTINUITY

Let us consider a cylindrical waveguide with perfectly
conducting walls having a small axisymmetric enlarge-
ment, so that a characteristic dimension of this discon-
tinuity is much smaller than the pipe radius b. It was
shown [1] that there is a solution of the Maxwell equa-
tions for this structure with the frequency ; slightly
below the cutoff frequency wy = pic/b, where p,, is the
mth root of the Bessel function Jy, m = 1,2,.... Far
from the discontinuity (in fact, at distances |z| > b) the
fields of the TM trapped mode have the form

2
T
£M = B (B1) exp(—kalz)

k r
el = sgnle) 2 (457 exp(calel ()
(1) _ _Wp1 g (T _
ZoHy) = ——+ Jl( . )exp( kalz])

where Zy = {/po/eo0 = 120w €, and the propagation
constant k; = \/w? — Q2 /c is given by

2
uiA
kl = 53 ) (2)

where A is the area of the cross section of the enlarge-
ment in the rz plane. (It was derived using the Lorentz
reciprocity theorem. In fact, the same can be done in
other ways, for example, from the equality &0 [ |£]2dV =
o [ |H|?dV, which is just energy conservation [6].) Note
that A enters Eq. (2) with its sign; e.g., for an iris that
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protrudes into the pipe, A would have a negative sign
and solution (1) would not exist. We assume from the
beginning that k16 < 1 or, in words, the trapped mode
is spread along the axis of the pipe over the distance

l; = k7' much longer than the waveguide radius, i.e.,
1 >0b.
For the frequency shift Aw; = w; — ; we get
2 2
py (A
Awy =w— | = .
) 3

For the case of a finite, though large, conductivity of the
walls, as a result of energy dissipation in the walls, the
trapped mode frequency acquires a negative imaginary
part Q; — Q3 — iy;. The damping rate ~; is

UJ]_(S

% ’ (4)

where § = 1/2/(pnoow) is the skin depth in the pipe wall

whose conductivity is 0. The trapped mode disappears
when «; becomes larger than Aw;.

The longitudinal impedance produced by the trapped
mode is calculated as that for a cavity with given eigen-
modes (see [4]):

M=

200171 Ry

Zl(w) = w2 — (Ql _ 7:'71)2 ’

(5)
where the shunt impedance R; is

_ Z()/,I,:l“z‘l"3
R, = Eporal (6)

In the limit of perfect conductivity, § — 0, Eq. (5) gives
an infinitely high and narrow peak. Expression (6) is
different from that obtained in [1], namely,

4Zopq A®
Bi= ez
b5 J7 (p1)

since Eq. (6) includes contributions from higher-order
waveguide modes. While amplitudes of excitation of
higher modes are small (they are calculated using the
approach of Ref. [7]), their sum contribution to the
impedance is comparable to that of the lowest mode given
by Egs. (1) because R; happens to be sensitive to the
field shape near the discontinuity [8]. One should recall
that the trapped mode is described by Egs. (1) only far
from the discontinuity, |z| > b, but for shorter distances
the field is formed also by many evanescent waveguide
modes.

It was shown that a small hole in the pipe wall also
creates localized axisymmetric trapped modes [1]. All
the results for an enlargement remain valid for the hole
if we put the quantity ag/(4mb), where oy is the magnetic
susceptibility of the hole, in Egs. (2)—(6) instead of the
area A of the enlargement cross section:

7]

A—)m.

(7)

A similar study has been performed for higher-order and
TE waveguide modes and the existence of trapped modes

in these cases was also demonstrated [1].

One can calculate the transverse impedance due to
trapped modes in a similar way. The lowest transverse
resonance occurs near the cutoff frequency wy1 = p11¢/b
of the TM;; mode, where pi,, is the mth root of the
Bessel function J;. The resonance impedance has a form

2iQ1711 R,

w? — (D41 — i’)’u)zab ’ ®

Z11(w) =

where for a symmetric enlargement the frequency shift
Awi; = wy; — 11 and damping rate «y;; are given by
Egs. (3) and (4) with p; replaced by pi1, @p is a unit
vector in the direction of the beam transverse offset in the
transverse chamber cross section where the discontinuity
is located, and the shunt transverse impedance is

_ Zolfllv‘lfs
Riv= = 5 ©)

This expression again includes contributions from higher
modes and replaces the result

R _ 4Z0[l,%1A3
e mw8b8JE (111)

which would take place if only the lowest mode is taken
into account.

In the case of a hole the structure loses its symme-
try, and in Eq. (8) the vector @ should be replaced by
(:ih cos(0p — 63), where z:ih is a unit vector in the direction
to the hole and 6,0; are the azimuthal angles of the
beam and hole, respectively, in the cross section plane;
see Ref. [7]. It means that the deflecting force is directed
to (or opposite) the hole and its magnitude depends on
the angle between the beam-offset vector and the direc-
tion to the hole. As for the value of R);, one should
substitute ag/(27b) instead of A in Eq. (9).

III. MANY DISCONTINUITIES

Consider an axisymmetric waveguide with N small
enlargements located at zq,z2,...,2n5 and having areas
A, Aa, ..., AN of the longitudinal cross section, respec-
tively. In this structure, we will look for a solution of
the Maxwell equations with a frequency 2 slightly below
the cutoff frequency w;. Let us introduce the propaga-
tion constant k = y/w? — Q2/c and consider the follow-
ing piecewise form of the solution [only z dependence is
shown below; the radial behavior corresponds to Eq. (1)
for &,, &., and Hg, respectively]:

a; exp(kz) for z< 2z,

an+1 €xp(kz) + b, exp(—kz)
for z,<z<zpy1,n=12,...,N—1, (10)

by exp(—kz) for z> 2N,
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where a;,b;, n = 1,2,..., N, are amplitudes to be deter-
mined. We assume here, as well as in the case of a single
discontinuity, that kb < 1 and the form of the solution
above is justified when enlargements are spaced at least
by the distance of the order of the chamber diameter,
so that one can neglect higher modes which are essential
only very close to discontinuities, namely, at distances a
few times smaller than the chamber radius.

To find the eigenfrequency of the trapped mode we use
continuity conditions and the Lorentz reciprocity theo-
rem. It states that for any two solutions of Maxwell’s
equations without sources the following equality holds

[9]:
/dSﬁ(El X ﬁg — Eg X ﬁl) =0, (11)

where the integration runs over a closed surface S con-
sisting of the surface of the waveguide wall and two plane
end surfaces which are transverse to the waveguide axis.
We take El = 5, ﬁl = # and choose Ez,ﬁz to be a
TM mode having frequency €2, the same as the trapped
mode, and exponentially decaying either as exp(—kz) in
the positive direction or as exp(kz) in the negative one.
Due to the orthogonality of the radial eigenfunctions the
only contribution to the end-surface integrals comes from
terms with factor exp(kz) [or exp(—kz)] opposite that of
the chosen TM mode. The only contribution to the wall
integral comes from the regions of the waveguide enlarge-
ments; see [1] for more detail. We choose the positions of
the end surfaces in such a way that the wall integration
in Eq. (11) includes only one discontinuity at a time and
apply this procedure twice to all discontinuities in turn
using first the TM mode with exp(—kz) behavior and
then the TM mode with exp(kz). In fact, for the first and
the last enlargements, which belong to the semi-infinite
intervals, we use the integration with only one of the two
possible TM modes. One more equation for each of these
two discontinuities follows from the field continuity:

aq exp(kz1) = by exp(—kz1) + azexp(kz1) ,
byn_1exp(—kzn) + an exp(kzn) = by exp(—kzn) . (12)

Other 2N — 2 equations follow from the reciprocity as
described above:

—a1 +yi1a1 +az =0,

—Qp + Yn [an + bn_1exp(—2kz,)] + Grp1 =0

—bn + Yn [bn + An+1 exp(Zan)] + bn_]_ =0 y

n=2,...,N—1 (13)
—by +ynbny +by_1 =0,

where the following notations are introduced: y,, = d, /=,
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d, = p2A, /b, and = = kb. Combining (13) and (12) we
get 2N simultaneous homogeneous equations for 2N + 1
variables: amplitudes a;,b; and propagation constant k.
The condition for the solutions for a;, b; to exist, i.e., the
determinant of the matrix on the left-hand side (LHS) of
the equations above to vanish, gives us an equation for
the propagation constant and hence for the frequency of
the trapped mode.

Due to the structure of the matrix, which has three
or fewer nonzero elements in each column or row, this
equation can be written recurrently for any given number
N in terms of all the LHS of the equations for lower
numbers of discontinuities. In the notations introduced
above, Eq. (2) for N = 1 can be rewritten as

1-y=0,

where y = d/z with d = u2A4/b% and = = kb. The small
parameter d is just the ratio of the waveguide radius b to
the length I; of the region occupied by the fields of the
trapped mode for a single discontinuity; cf. Eq. (2). For
the case N = 2 from (13) and (12) we get

D 2(k) = (1 —y1)(1 — y2) — exp(—2kg1,2)t1y2 =0,
(14)

where g;, = 2z — z; (k > ©) is a longitudinal spacing
between the ith and kth discontinuities. Similarly, for
N = 3 the equation is

D1 3(k) = Di,2(k)D2,3(k) — exp(—2kg1,3)y1y3 =0 .
(15)

For the case of N > 3 discontinuities the equation can
be written in the form

Dy n(k) = Dy n—1(k)Dn_1,n(k)
N—2
- Z D1,m (k) exp(—2kgm,N)ymyn
m=2

—exp(—2kg1 n)y1yn =0, (16)

which can be proved by induction. Multiplying by k2% —2
the LHS of the equation, one can reduce it to a polyno-
mial of the power (2N —~2) in k, except for the exponential
dependence on k in its coefficients.

A. N =2

To study the frequencies of trapped modes in the sys-
tem of two discontinuities, it is convenient to introduce
the following: the ratio of areas of two enlargements
p = Az2/A1 > 1; d = p2A;/b?%; the variable u = z/d
is the ratio of the propagation constant k for a N = 2
trapped mode to that in the case of a single discontinu-
ity kq, given by Eq. (2) with A = A;; and the parameter
r = gd/b = g/l; is the ratio of the distance between
discontinuities to the length /; of the region occupied by
the trapped mode for a single discontinuity with area A4,
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ie,l; =b/d =b3/(u?A,); cf. Eq. (2). In these notations,
Eq. (14) takes the form

(u—1)(u — p) — pexp(—2ur) =0 . (17)

We are interested only in positive solutions of this equa-
tion. Factorizing it as product of two “linear” equations

[211, —p—1—+/(p—1)2+ 4pexp(—2ur)]

x [2u —p=1++/(p—-1)2+ 4pexp(——2u’r)} =0, (18)

one can easily find out that there are two positive solu-
tions. The first one u, exists for any positive value of
parameter 7 and decreases asymptotically in the range
from p + 1 at small r to p when r > 1/p. The second
solution u, exists only for r > (p+1)/(2p) and increases
asymptotically from 0 to 1 with an increase in r (see
Fig. 1 for p = 2). The asymptotic values p and 1 obvi-
ously correspond to the two independent trapped modes
for the two discontinuities separated so far that they do
not “feel” each other, and each mode is described sepa-
rately by Eq. (2).

The case of two identical discontinuities p = 1 is very
interesting. The factorized Eq. (18) is especially simple
in this case:

[u—1—exp(—ur)][u — 1+ exp(—ur)] =0 (19)

and both its solutions tend to 1 at large r. The physical
interpretation of the two possible solution can be easily
found from Egs. (12) and (13): u, gives a symmetric field
and u, an antisymmetric one, i.e., the fields are zero in
the midpoint between the two identical enlargements for
the second solution. The antisymmetric solution exists
only for large spacings (see Fig. 2) and its frequency shift
is always smaller than that for a single discontinuity with
the same area. It should be noted here that frequency
shifts are assumed to be small compared to the cutoff
frequency and they are approximately proportional to
u?; cf. Eq. (3).

The behavior of the symmetric solution u, at small r
is also easy to explain: when two enlargements are very
close to each other they work like a single enlargement
with area A = A; + A,. It corresponds to the limit

2.5

u 15

0.5 /

FIG. 1. Ratio u = k/k; versus r = g/l; for two discontinu-
ities with p = 2.

FIG. 2. Ratio u = k/k; versus 7 for symmetric (solid line)
and antisymmetric (dashed line) modes. Thick points show
numerical results.

u, = p+1in the general case of two discontinuities (and
us — 2 for two identical ones) when r — 0.

It is appropriate to mention an obvious analogy of the
problem under consideration with the well-known prob-
lem of two narrow potential wells in quantum mechan-
ics. To check our analytical results for frequencies, we
have carried out numerical computations of the lowest
eigenfrequencies in a long cylindrical resonator with two
small pill boxes by means of the computer code SUPER-
FISH [10] varying the distance between the pillboxes. The
waveguide cutoff frequency w; corresponds to the eigen-
frequency of the Egy10 mode in the smooth (without pill
boxes) resonator with the same radius, but the presence
of enlargements shifts the eigenfrequency down. To ex-
clude the influence of the sidewalls, one has to choose
the length L of the resonator to be larger than the region
where the trapped mode is localized, L > [; = b3/(u2A).
We have used b = 2 cm, 4; = A = A = 0.18 cm?
(d = 0.26), g =1-20 cm, and L from 40 cm to 100 cm.
Figure 2 shows that numerical and analytical results are
in good agreement. Figures 3 and 4 show the electric
field lines for resonator eigenmodes that correspond to
the symmetric and antisymmetric trapped modes in the
waveguide with two enlargements (only one-quarter of
the longitudinal cross section of the resonator is shown).

The resonant contributions of trapped modes to the
beam-chamber coupling impedance can be calculated in
the same way as in the case of a cavity with known eigen-
modes; see Ref. [4] for details. The peak value of the lon-
gitudinal impedance in the resonance can be evaluated
as

_ o8| [ dzexp(=i2/0)E, (2)
fa = J sl I2 ’ e

where ., is the tangential component of the magnetic
field near the wall, integration in denominator is per-
formed over the inner waveguide surface, o is conductiv-
ity of the pipe wall, and § = 4/2/(poow;) is the skin
depth. Performing the integration and taking into ac-
count that the frequency €2 of the trapped mode is very
close to the cutoff frequency w; = pi1c¢/b leads to the
expression
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g=2cm f=5645.323 MHz

="

g=8cm {=5681.778 MHz

L J
J

f = 5697.705 MHz

g=20cm

FIG. 3. Electric field lines in symmetric trapped modes.

3u(1 + p) + 2p[exp(—ur) cos(p1g/b) — 1]
u(l + p) + 2p [exp(—2ur)(1 + ur) — 1]

Rz = Rlu

I

(21)

where Ry = (Zou3A3)/(mb%) is just the impedance for
a single enlargement with area A; [cf. Eq. (6)], and u =
u(r, p) is a solution of Eq. (17).

The extreme cases of small (r — 0) or large (r > 1)
distances between discontinuities can be derived easily
basing on the study of Eq. (17) above. For small r the ra-
tio of impedances of two discontinuities to the impedance
of the smallest one of them, R2/R;, tends to (1 + p)3 for
the “symmetric” solution u,. For large distances, Ra/R;
becomes p3 for u, and 1 for u,. There are some oscilla-
tions at intermediate distances; see Fig. 5.

Expression (21) takes an even more simple form for the
case of two identical discontinuities p = 1:

u? [1 % cos(u19/b)]
1+ exp(—ur)(l + ur) ’

Ry =Ry (22)

where the upper sign corresponds to the symmetric solu-
tion u = u4(r), which satisfies v — 1 — exp(—ur) = 0, and
the lower one to the antisymmetric solution u = ug4(r),
which satisfies u — 1 + exp(—ur) = 0. The asymptotic
behavior of (22) at large distances can be found using
asymptotics u; - 1+ e " and u, -+ 1 — e~ ". The ra-
tio Ry/R; becomes [1 + cos(p19/b)]. While the sum of
these impedances is just twice the impedance of a single
enlargement, there are strong oscillations for each of two
modes. The ratio Ry/R; is plotted in Fig. 5 for p = 2

-

f=5722.191 MHz

g=12cm

e

f=5707.764 MHz

g=20cm

FIG. 4. Electric field lines in antisymmetric trapped modes.
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FIG. 5. Impedance ratio R = Rz/R; versus r = g/l; for
two discontinuities with p = 2 (parameter d = 0.26).

and in Fig. 6 for p = 1.

B. N=3

We restrict ourselves here only to the case of three iden-
tical equidistant discontinuities, i.e., d; = d, i = 1,2, 3,
and g1,2 = g2,3 = 9. Equation (15) transforms into the
factorized equation

(u — 1)[u — 1 + exp(—2ur)]

x[(u=1)2 = (u+1) exp(—2ur)] =0, (23)

where again v = kb/d = k/k, and r = gd/b = g/l;. One
can easily recognize that the expression in the second
brackets gives an antisymmetric trapped mode for two
enlargements spaced by 2g [compare Eq. (19)] and the
enlargement in the middle just does not play a role in
this case since the trapped mode fields vanish near its
location. The first brackets gives an extraneous root,
while the “quadratic” equation in the square brackets
has two positive solutions which correspond to symmetric
trapped modes. The first solution u,o, corresponding to
fields without nodes, exists for all positive values of r
and tends to 3 at small ». The second one u,; exists
only when r > 3/2 and gives a trapped mode with two

. / / "
7\ [ 7\ \
[ o\ (Y \
9 / / U
) ) !
1 v
! ] ] [
] \ \
’ \ ! \ / v

\
) ,I
\
2 3
r

- ,
I \ 2
'R FR Y
1 \ '
i / /
! )
\ \
\ v
\ \ s

FIG. 6. Impedance ratio R versus r for two identical dis-
continuities (d = 0.26). The solid line is for the symmetric
mode, the dashed line for the antisymmetric mode.
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1 2 3 4

’

FIG. 7. Ratio u = k/ki versus r = g/l; for three identi-
cal discontinuities. Solid lines are for symmetric modes, the
dashed line is for the antisymmetric mode. Thick points show
numerical results.

nodes. All three solutions go asymptotically to 1 at large
distances between discontinuities. Figure 7 shows the
three solutions of Eq. (23) versus the spacing between
discontinuities, as well as comparison with results of some
numerical computations using SUPERFISH.

The impedance for the antisymmetric trapped mode
is given by Eq. (22) with the minus sign and g — 2g,
r — 2r substituted. For the symmetric modes one can
obtain

[exp(ur)(u — 1) + exp(—ur) + 2u cos(,ulg/b)]2‘

R3=R
3 1 3u + 1 — exp(—2ur) + 4ur(u — 1)

(24)

The derivation and notations used are similar to those
of Eq. (21). At small distances, the ratio R3/R; for the
maximal symmetric mode u,o goes to 32 = 27 and at
large distances it oscillates as [14++1/2 cos(u19/b)]?/2. The
second symmetric mode exhibits similar oscillations [1 —
V2 cos(u19/b))?/2 at large r. The impedance versus the
distance between discontinuities is plotted in Fig. 8. In
spite of the oscillations for each of the trapped modes, the
sum of the impedances for all three modes becomes triple
that for a single discontinuity at large spacings in which
case all three modes have the same frequency, given by

Eq. (3).

FIG. 8. Impedance ratio R = R3/R; versus r: the solid
line is for so, dashed for a, and dash-dotted for the s; mode.

C. Many identical discontinuities

In the case of NV identical equidistant enlargements one
should put y; =y, ¢ =1,2,...,N,and g;;41 =g, i =
1,2,...,N — 1, in Eq. (16). The resulting equation has
the following properties.

It can be factorized in the form

(1—y)N2Pa(y)Pm(y) =0, (25)
where n, m are integers satisfying n + m = N so that

_ m for N =2m
"“Im+1 for N=2m+1,

and P, (y), P (y) are polynomials in y of the power n and
m, except for the exponential dependence on v = 1/y in
their coefficients; cf. Egs. (19) and (23) above. Equation
P, (y) = 0 has up to n positive solutions corresponding
to symmetric trapped modes. The actual number of the
roots depends on the distance g between discontinuities.
It can be proved by induction that for any g there is at
least one solution and it behaves like y ~ 1/N at small
distances, i.e., k ~ Nk, because P,(y) = 1 — Ny when
g/li — 0. This solution corresponds to the maximal
symmetric trapped mode, without nodes, as discussed in
Secs. IITA and IIIB for N = 2 and N = 3. It always
has the largest frequency shift, i.e., the lowest frequency
between all the trapped modes.

Equation P,,(y) = 0 gives up to m solutions corre-
sponding to antisymmetric trapped modes. At large dis-
tances, when g/l; > 1, the asymptotics of P;(y), j =
n,m, are (1 — y)? and there are N = n + m solutions of
Eq. (25) which asymptotically tend to 1. The degener-
ated roots y = 1 due to the explicit factor in Eq. (25) are
extraneous ones.

As follows from discussions in Secs. III A and IIIB
the physical interpretation of the both extremal cases,
at small and large spacings, is quite obvious. At small
distances between discontinuities they work together as
a single combined discontinuity with effective area A =
A+ Az +---+ AN, which gives the maximal symmetric
trapped mode with k ~ Nk; for identical discontinuities.
At large separations, the discontinuities do not feel each
other and there exist N independent trapped modes, each

4 5

FIG. 9. Ratio u = k/k; versus r for N = 6 identical discon-
tinuities. Solid lines are for symmetric modes, dashed lines
for antisymmetric modes.
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localized around one of the discontinuities. These modes
can be described by the equations of Sec. II for a single
discontinuity.

Pictures of subsections N = 2 and N = 3 give some
impression about frequencies and impedances of trapped
modes for these particular cases. In addition, Fig. 9 gives
an illustration of the solutions to Eq. (25) in the case of
N = 6. There are three symmetric and three antisym-
metric trapped modes.

IV. MANY DISCONTINUITIES:
PERIODIC STRUCTURES

A. One discontinuity per period

In this section periodic arrays of discontinuities are
considered. We assume that the period of the structure D
is longer than the waveguide diameter, D > 2b, and look
for a solution of the Maxwell equations with frequency
below the waveguide cutoff, @ < w;. According to Flo-
quet’s theorem, for periodic structures solutions must get
a phase advance ¢ when the argument increases by one
period, f(z + D) = exp(i¢)f(z). As before, we restrict
our consideration to only TM-type solutions with radial
behavior given by Eq. (1), taking into account, however,
that the same way of reasoning works for TE modes. Let
us consider one period —D/2 < z < D/2 with an enlarge-
ment located at z = 0. Similar to Eq. (10) and using the
same notations, one can write the z dependence of the
solution as

aexp(kz) + b_1 exp(—kz) for —-D/2<z<0,

bexp(—kz) + a1 exp(kz) for 0<z<D/2, (26)
where amplitudes a, b correspond to the waves originated
from the enlargement at z = 0, the wave with amplitude
b_1 comes from the previous period of the structure with
the center at z = —D, and the wave with amplitude a;
comes from the next period, with the center at z = D.
From periodicity it follows that

b_, = bexp(—i¢ — kD) a1 = aexp(ip — kD) . (27)
To find the frequency of the trapped mode we use con-
tinuity conditions and the reciprocity. The continuity at
z = 0 requires @ + b_; = b + a;. Taking into account
relations (27), we apply the reciprocity theorem for the
trapped mode under consideration and a regular wave-
guide TM mode with the same frequency €2 to get a sim-
ple equation for propagation constant k for a given phase
advance 0 < ¢ < m:

y — 1 — exp(—kD)[(y + 1) exp(—kD) — 2cos¢] = 0 ,
(28)

where, as well as in previous sections, y = d/(kb) with
d = p2A/b? < 1. Using new variables u = 1/y = k/k;
and p = dD/b = D/l;, one can rewrite it as
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1— e—-Zup

T 1_2e-wp cos ¢ + e—2up

_ sinh up . (29)
coshup — cos ¢

u

Figure 10 shows solutions u(p) for a few different values
of parameter ¢. The value ¢ = 0 corresponds to the solu-
tion with the period D equal to that of the structure (the
upper curve). It is the maximal symmetric mode, which
has the largest frequency shift among all solutions, i.e.,
the lowest frequency. The lowest curve in Fig. 10 cor-
responds to ¢ = 7 and this is the antisymmetric mode
with period 2D, twice the structure period. In general,
for an infinite periodic structure there is a continuum of
solution to Eq. (29) for 0 < ¢ < 7 which fills the whole
range between these two extreme curves in Fig. 10. How-
ever, if the physical period consists of a finite number M
of discontinuities, like an accelerator ring with M peri-
ods, the phase advance ¢ can only take discrete values
¢m = Tm/M, m = 0,1,... M, and there is a discrete
set of up to M + 1 different solutions of Eq. (29). Three
intermediate curves shown in Fig. 10 for the case M = 4
correspond (top to bottom) to ¢ = w/4, 7/2, and 3w /4.

For a given ¢ > 0, there is always the trivial solution
u = 0 of Eq. (29) for every p > 0, and starting from some
threshold value, there is also a positive solution u(p) > 0.
For example, for ¢ = 7 this threshold value is p = 2. An
interesting feature distinguishes the maximal symmetric
mode ¢ = 0 from other ones: there is no trivial solution
in this case and there is no threshold since a positive solu-
tion u(p) > 1 exists for any positive value of p. It is clear
from Fig. 10 that only for large distances between discon-
tinuities (p > 2) there is a passband separated from the
wavequide cutoff. When discontinuities are further sep-
arated, the width of this passband shrinks exponentially
to the frequency of the trapped mode for a single discon-
tinuity (cf. Sec. II) because u(p) ~ 1+2 cos ¢ exp(—p) for
p> 1.

A simple study shows that solutions u(p) for 7/2 <
¢ < m monotonically increase from 0 staying less than 1
with p increasing. Solutions for 0 < ¢ < 7/2 have max-
imum u(p*) = 1/sin¢ at p* given by cosh(p*/sin¢) =
1/cos¢. The maximal symmetric solution u(p), which
corresponds to ¢ = 0, is monotonic and has no upper
limit; its asymptotic for short periods is

u(p) >~ v/2/p=+/2l1/D for p<k1. (30)

This behavior is quite different from that of the asymp-

FIG. 10. Ratio v = k/ki versus p = D/l; for periodic
structures. Thick points show numerical results.
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totics in the case of a finite number of discontinuities,
when u tends to a finite limit (Sec. III). Since u = I/,
where I; = 1/k; has the meaning of the length of the
region occupied by the trapped mode for a single dis-
continuity [cf. Eq. (2)] and | = 1/k, it gives a new “effec-
tive” length of the symmetric trapped mode in a periodic

structure
[ Dl b /Db
Il — = — [ — . 1
2 M1 2A (3 )

The frequency shift down from the cutoff frequency for
this trapped mode becomes

2 2
_opy (Au\T A

This simple answer has also a simple physical explana-
tion. For a closed cylindrical cavity resonator of length
D and radius b with a small axisymmetric enlargement,
having area A in the longitudinal cross section, on its
side surface, the eigenfrequency of a given TM mode wq
shifts down due to the enlargement present, e.g. [11],

Aw _1 [y dV(HP - |EP) 4
[, dVIH[? D’

oo 3 (33)

where E, H are the fields in the resonator without en-
largement, AV and V are volumes of the enlargement
and cavity. In the transition to the expression (33), in
the RHS it is taken into account that |F| <« |H| near
the cavity wall. So, the relative frequency shift is pro-
portional to the ratio of the volumes of the enlargement
and cavity, as in Eq. (32).

One can imagine metallic transverse end planes in the
middle between every two discontinuities in a periodic
structure so that it transforms into a chain of adjacent
identical cavities. Such walls do not change the fields and
frequencies of the maximal symmetric trapped mode in
the waveguide, which has a period equal to that of the
structure. However, the analogy between Egs. (32) and
(33) works only when the fields fill the whole cavity, from
one end wall to the other. It is exactly the case of trapped
modes in short-period structures when D < l;. One the
other hand, for long periods (D > l;) the argument of a
closed cavity fails since the fields in a trapped mode do
not reach the end walls, which is why the frequency shift
is independent of the length of resonators.

It is appropriate to mention that starting from the well-
known relation (33) one can easily derive qualitatively the
frequency shift of the trapped mode for a single disconti-
nuity Eq. (2). Indeed, if the mode frequency is given by
Eq. (33), its propagation constant is

k ~ v/ 2woAw/c = p1/b\/2A/(bD)
and the length of the mode propagation
l=1/k =b/u14/bD/(24) .

These relations work until [ > D/2, otherwise fields tear
off the end surfaces of the resonator. One can estimate

the resonator length when it occurs by putting D = 21
in the equation above. If D becomes larger, the mode
frequency does not change any more because the fields
do not reach the end walls. It gives

1=0b°/(434) ,

which is exactly the same as what follows from Eq. (2).
Of course, the coincidence of the numerical factors is just
by accident.

It is clear from the discussion above that one can check
Eq. (32) by numerical computations using SUPERFISH [10]
even more easily than in previous sections when one had
to use very long resonators in order to avoid the influence
of the end walls. The results of our numerical calculations
for various resonator lengths (i.e., various periods) are
shown in Fig. 10 and coincide well with the results from
Eq. (29) with ¢ = 0. Figure 11 shows fields of the lowest
trapped mode calculated by the code for two periodic
structures.

We restrict ourselves by calculating the resonant cou-
pling impedance only for the lowest (maximal symmet-
ric) trapped mode, since one can expect from consider-
ations above that it gives the largest contribution. The
impedance per period produced by this trapped mode
can be calculated in the same way as above [cf. Eq. (20)],
except the integration over z should be limited to one
period. The result is

—Uu —U 3 2
R R (1+e7vP + 28~ uP/2 5in LLP) (34)
P ! 1 + 2upe—%P — e—2up ’

where u = u(p) is a solution of Eq. (29) with ¢ = 0 and
R, is given by (6). The asymptotics of the impedance
are: for large distances (p > 1), R, — R, i.e., to the
impedance of a single discontinuity; for short distances
where 2d < p « 1, i.e., 2b < D < I; = b3/(u24),

{d + sin[u: D/ (25)]}?
ds/2,/2D/b
_ Zy \/74? . D A 2
=xsVaD (Sm 2% T )
An interesting feature of this last expression is that it be-
haves as v/ A, while in the opposite extreme R, -+ R, «
A3. Since A is considered to be small (d = p24/b? <« 1),

the impedance per period is much larger for short-period
structures. It is illustrated by Fig. 12, which shows the

Rp—)R]_

D=4 cm {=5597 MHz D=8 cm {=5659 MHz

FIG. 11. Electric field lines in trapped modes for two peri-
odic structures with different periods.
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120
100

8 (b)

FIG. 12. Impedance ratio R = R,/ R; versus p for periodic
structures with a single discontinuity per period (d = 0.26).
(a) and (b) have different scales.

impedance per period versus the period length.

It is worthwhile to relate R,, calculated above, to the
impedance of a cyclic accelerator. Let the accelerator
vacuum chamber consist of a large number M of peri-
ods of length D and consider the lowest trapped mode in
this structure, as described above. Calculating the cou-
pling impedance of the ring according to Eq. (20) with 2
integration over the whole ring and taking into account
field periodicity, we get an extra interference factor to
the impedance R, per period, Eq. (34), namely

1 (sin(KMD/Z))2 , (35)

Rm = Rogr \ Sn(®DJj2)

*M
where K = Q/c is the longitudinal wave number for a
current harmonic with frequency €2 equal to that of the
trapped mode.

One can easily realize that the interference factor in
Eq. (35) has sharp maxima M when KD = 2mm, m =
1,2,..., which leads to high impedance values, while for
other KD it is rather small. Since the value of K is al-
most fixed by the chamber radius K ~ p; /b, one should
avoid placing holes with period D ~ 2mnb/uq, choosing
instead D ~ (2m + 1)wb/p,, which makes Ry < R,/M
due to destructive interference of trapped modes in ad-
jacent periods of the structure. The physical meaning
of the interference condition KD = 2mm is obvious.
It means that the number of the current wavelength
A = 27 /K on one period of the structure is an integer,
D = mA, so that all periods work in phase.

The important quantity entering the stability condi-
tions in circular accelerators, e.g., [2], is the so-called
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reduced longitudinal impedance Z/n, where Z is the
total impedance of the ring at given frequency w and
N = w/wrey is the corresponding harmonic number of
the revolution frequency wiev = ¢/R, with R being the
machine radius. The real part of the reduced coupling
impedance of the ring is now

ReZ Ry 2Ry
n n  KMD
_ p ™KD ( sin(K MD/2) )2
) (KMD/2)sin(KD/2)

(36)

In the worst case of KD = 2mm, it transforms into

ReZ R,

b

n m

which means that the impedance per period R, given
by Eq. (34) imposes the upper limit on the reduced
impedance of the ring.

B. A few discontinuities per period

Let us consider briefly the case when there is more than
one enlargement per period of a periodic structure. Once
again we introduce unknown amplitudes of a piecewise
solution and apply restrictions from continuity, periodic-
ity, and reciprocity to obtain a linear system of equations
for the amplitudes. For the case of N enlargements, there
are 2N + 1 variables (2N amplitudes and one propaga-
tion constant k) and 2/N homogeneous equations. In fact,
they differ from Egs. (12) and (13) only by two first and
two last equations (for the first and last enlargement),
due to periodicity. The requirement of the determinant
of the matrix M,y (k) on the LHS of the linear system to
vanish gives an equation to solve for k. We restrict our-
selves only by an example of the lowest mode (¢ = 0; cf.
Sec. IVA) for N = 2, in which case this equation takes
the form

det Ma(k)/[(1 — 1) (1 — y2)]

=1 —y1)(1 —yz) — e *yyy, — 2e*P
+€—2kD(1 + yl)(l + yz) _ e—Zk(D*Q)ylyz =0, (37)

where D is the structure period, g is the distance be-
tween the discontinuities, ¢ < D, and y, are defined
after Eq. (13). For long periods, kD > 1, Eq. (37) be-
comes just Eq. (14). For short distances g, when kg < 1,
Eq. (37) is the same as Eq. (28) for one enlargement per
period, but with y = y; + y2, i.e., we have a single com-
bined discontinuity.

When two discontinuities are identical, y; = y; = v,
Eq. (37) transforms into a product of two (for either up-
per or lower sign) equations (u = 1/y):
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FIG. 13. Ratio u = k/k; versus p = D/l; and q = g/D for
periodic structures with two discontinuities per period, for the
antisymmetric mode.

__ coshup/2 £ coshu(p/2 —7)
- sinh up/2

where p = dD/b and r = dg/b, r < p. In the particular
case D = 2g, the first of these equations (upper sign)
transforms into Eq. (29) with ¢ = 0 and p replaced by
r, which corresponds to the maximal symmetric mode
in the structure with period g and one discontinuity per
period. The second equation in the same particular case
gives Eq. (29) with ¢ = 7 and p replaced by r, and can be
recognized as corresponding to an antisymmetric trapped
mode, which has a period twice as long, 2g. In the general
case of arbitrary p and r, this solution exists when (i) p is
large enough and (ii) both ¢ = 7/p = g/D and (1—gq) are
not very small. This statement is illustrated by Fig. 13,
where the solution u,(p,r) of Eq. (38) for the lower sign
is plotted as the function of p and ¢q. The same plot for
the solution u,(p,r) of Eq. (38) with the upper sign is
shown in Fig. 14. One can see that the frequency shift
for the antisymmetric mode is always smaller than that
for a single discontinuity (u = 1), while for symmetric

FIG. 14. Same as Fig. 13, but for the symmetric mode.

solutions it is always larger. One can note that the cross
section of surfaces in Figs. 13 and 14 by the plane ¢ = 1/2
would reproduce two curves (the lowest and the upper
ones) in Fig. 10 with p replaced by 2p.

V. EFFECTS OF TRAPPED MODES IN LINERS

It should be recalled that the results above are appli-
cable to vacuum chambers not only with small enlarge-
ments but also with small pumping holes. The only dif-
ference is that for holes one should replace area A of the
enlargement cross section in all formulas by an “effec-
tive” area, as mentioned in Sec. II. For example, if there
are M holes in one transverse cross section of a cylindri-
cal vacuum chamber, for an axisymmetric trapped mode,
the following substitution takes place:

agy +agz + -+ aonm

A
- 47b ’

(39)

where ag,_,, m = 1,2,..., M, denotes the magnetic sus-
ceptibility in the azimuthal direction of the mth hole in
this transverse row and b is the chamber radius. The sum
occurs because all small pumping holes, having the same
longitudinal position, contribute to the trapped mode
additively, working as a single discontinuity. Holes at
another longitudinal location work as another combined
discontinuity. As follows from the results above, one can
consider two small holes as having the same longitudi-
nal position if their separation along the chamber axis is
shorter than the chamber radius.

Bearing this in mind, we shall study trapped modes
in a liner of a superconducting accelerator and give es-
timates of their contribution to the coupling impedance.
As an example, we refer to the LHC vacuum chamber
[5]. Its design anticipates the insertion of a special beam
screen (liner) inside the cold (at 2 K) vacuum chamber of
a circular cross section with an inner diameter of about
50 mm. The liner is a kind of inner pipe placed coaxially
with the cold bore beam tube. It will be supported by
thermal insulators and kept at a temperature 10-20 K by
means of a separate helium cooling system, with cooling
pipes in the coaxial space between the liner and the outer
vacuum chamber. Such a beam screen has to prevent
heating of the cold walls of the bore chamber and help to
avoid vacuum problems due to photodesorption of resid-
ual gas molecules stuck to the cold wall. In the present
design the liner has a square transverse cross section with
rounded corners, rotated in such a way that diagonals of
the square are in vertical and horizontal directions to
provide the most space for the beam while fitting inside
the bore pipe. The stainless-steel liner walls have thick-
ness t ~ 1 mm to resist distorting forces during magnet
quenches and a thin (about 50 pm) copper coating of the
inner wall surface to slow down the resistive wall insta-
bility. The inner distance between opposite plane walls
of the liner is 35 mm.

To minimize the low-frequency coupling impedances,
the pumping holes in the liner walls will have a shape
of rounded-end narrow longitudinal slots with length
s = 6 mm and width w = 1.5 mm. The total pumping
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surface is 4% of the wall surface; this fraction was chosen
from vacuum requirements. There are 666 pumping slots
per meter of liner, with M = 8 slots in one transverse
cross section, and the average longitudinal separation be-
tween adjacent cross sections with the slots (combined
discontinuities) is g = 1.2 cm. The longitudinal period-
icity of the slot distribution will be intentionally violated
by displacing slots by small (a few millimeter) random
distances along the chamber axis from their position in
the periodic structure to avoid resonances due to peri-
odicity which would otherwise occur at frequencies well
above the cutoff, see Ref. [12]. Due to this randomized
distribution the liner should not be treated as a periodic
structure, especially with respect to the impedance esti-
mate, but since discontinuities are very close, numerous
and more or less evenly distributed, one can use results of
Sec. IV to estimate the frequency shift of the lowest sym-
metric trapped mode and its interaction length. Taking
into account that TM modes in a square, rounded-end
waveguide are quite similar to those in a cylindrical one,
we will take for estimates the “effective” chamber radius
b =18 mm. Then expression (39) takes the form

Moy Muw?s
4wb ~ 4m2b

(40)

where we use transverse magnetic susceptibility ay =
w?s/m for a narrow long slot in the thick wall, because
t ~ w; see, e.g., in [13,14]. As a result, the effective
area to be substituted in formulas of Secs. IIT and IV is
A = 1.52 x 1073 cm?. The length of the region which
would be occupied by the field of the trapped mode for
a single such discontinuity is I; = b%/(u?A4) = 6.63 m;
cf. Eq. (2). Since this is much longer than the distance
between adjacent discontinuities, they strongly interact
each other, and because g < [;, this situation is described
by Egs. (30)—(32) with D = g = 1.2 cm. It means that
u = 4/2l; /g ~ 33 and the new effective length of the in-
teractionl = 4/l1g/2 = 20 cm. If we define the number of
discontinuities that work as a single combined discontinu-
ity by Neg = 2l/g, one can easily see that Neg = u = 33.
The frequency shift for the trapped mode is given by
Eq. (32):

Aw
wi

whichis Af ~ 5 MHz for f; ~ 6.4 GHz. The gap between
the trapped mode frequency and the cutoff is rather small
and one has to compare it with the width of the resonance
due to energy dissipation in the walls and due to radiation
from the slots: v = 1 + Yraqa. According to Eq. (4),

=7x107%,

M6 _23x107°
Wiy - 2b - \/R ’
where R is the ratio of the copper conductivities at cryo-

genic and room temperatures, which is usually 30-100.
The radiation width for a thin wall would be [1]

Yrad ~ NCHMH:;"‘?O‘S

e 6 x 1075 .
w1
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However, for the thick wall, the external magnetic suscep-
tibility qext ~ exp[—nt/(2w)]as should be used, which
makes the radiation width much smaller, ypaq/w; =~
7 x 1078, So the resonance width is small compared to
the frequency gap and the trapped mode exists.

Let us proceed with impedance estimates. If discon-
tinuities are far separated, g > l;, the total impedance
of the ring is just a sum of contributions (6) from all
N = 2mwR/g discontinuities. Since w ~ w; = pic¢/b, it
leads to the estimate

ReZ NRy 2mb_,  2ZyuiA®

= —Ry = —— . 41
n n gH1 ! dbig (1)

[In the case when 4,54 is not small compared to v, in
Egs. (41) and (42) one should replace 25/ by w; /v with
Y = Y1 + Vrad.] However, the case of the LHC liner is dif-
ferent because g <« l; and the interaction of discontinu-
ities should be taken into account. One can consider each
group of N.g discontinuities (i.e., Neg cross sections, each
with eight slots) as a single combined one and the num-
ber of such group on the ring is Ny = N/Neg = wR/L.
Then the estimate follows from Eq. (41) with replace-
ments N — N/Ng and Ry — N3;R; (cf. Sec. III):

2
_ NfﬁEle _ 4ZpA
n gp dbg?

which gives ReZ/n ~ 165  for the narrow-band
impedance produced by the trapped modes in the LHC
liner, if R = 100. This value for the narrow-band cou-
pling impedance is too large, even for such a high fre-
quency.

In order to improve and generalize the impedance esti-
mates above, one should consider that the pumping holes
are not quite identical, they have some distribution of
areas. It results in a frequency spread of resonances pro-
duced by different discontinuities. One can take account
of the resonance overlapping using a weighted sum in
calculating the total impedance of the ring, e.g. [15],

: (42)

Ziot(w) = NZ(w) — N/dAw(A)Z(w,A) ,

where w(A) is the area distribution, [dAw(A) =1, and
Z(w, A) is defined by Eq. (5). It is convenient to rewrite
Z(w, A) at frequencies near the resonance, i.e., when w ~
Q(A) = w1 — Aw;y(4), as

iRy (A)

Z(w,A) ~ ,
( e

where R;(A) and Aw;(A) are the resonance impedance
and frequency shift for the trapped mode caused by a
discontinuity with area A. If the resonance width is small
enough, namely, v < Aw;(A4) < w, the integral over
areas can be treated like a dispersion integral to get

F(A) . F(A))
Im /dAl_ wi 4 Awi(4) 4 oy T —m‘iAqu.) ’
w w w dA w

where A, = A,(w) is the solution to equation w = w; —

Aw1 (A*)
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In this way, we obtain two impedance estimates. For
far separated discontinuities, i.e., g > [l;, the frequency
shift is given by Eq. (3) and

2
~ oz, AAT
n bg

(43)

with A being the averaged area per discontinuity. It
should be noted that this estimate is applicable instead
of Eq. (41) only when the a posterior: condition

¥ niA

w  wbhtw(A)

is valid. Otherwise, Eq. (43) would give higher value
than (41), which is unacceptable because spreading of
resonance frequencies due to the area distribution only
reduces the impedance.

For interacting discontinuities g < l;, the frequency
shift is proportional to the area [cf. Eq. (32)], and the
impedance estimate is

2
ReZ ~ 27rZow(A)A '
n bg

(44)

Surprisingly, it is just twice the result of Eq. (43). For
a specific distribution one should take maxw(A) to get
maximal impedance estimates (43) and (44). For ex-
ample, for a Gaussian distribution of areas with stan-
dard deviation o4, it is 1/(v/2704). If we assume
ca/A = 0.1 and apply Eq. (44) for the LHC liner, it
gives ReZ/n ~ 7 Q. This estimate is lower than that
from Eq. (42) and it is independent of the wall conduc-
tivity and radiation from slots.

It should be noted that an impedance estimate for a
liner as a periodic structure, using Eqgs. (34) and (36),
would be much higher. However, the periodicity of
pumping holes in the liner is violated by the very struc-
ture of the accelerator ring, which includes many irreg-
ularities such as interaction and utility regions, etc. An
additional violation of the hole periodicity is introduced
by randomization of the longitudinal distribution of slots
in order to reduce high-frequency resonances; cf. [12].
Since even a small distortion of the periodicity drasti-
cally reduces the resonance coupling impedance of the
structure (see [12,16]), the estimate (42) is more appro-
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priate for the LHC liner case than if we would apply the
impedance formulas of Sec. IV for periodic structures.

VI. CONCLUSIONS

Trapped modes in waveguides with many small discon-
tinuities such as enlargements or holes are studied both
for periodic and nonperiodic structures. The existence
conditions for trapped modes are considered and their
frequencies are calculated. The calculated frequencies
are in good agreement with results of numerical compu-
tations for particular cases. While our study concentrates
on the lowest axisymmetric TM modes because of their
importance for the beam-chamber coupling impedance
calculations, the results can be easily applied for TE
and higher-order modes, using propagation constants for
these modes from [1] and formulas of Secs. III-V.

The magnitudes of the narrow-band resonances of the
coupling impedance produced by the trapped modes are
calculated. These results are applied to obtain coupling
impedance estimates for the liners (thermal screens) of
large superconducting colliders at frequencies near the
cutoff. The practical conclusion for the liner design is to
avoid an exact periodicity in the longitudinal distribution
of the pumping holes and intentionally introduce some
distribution of the hole areas (or slot lengths) to reduce
effects of the trapped modes.

Note added. Very recent experimental studies of the
beam pipes with many small holes [17] at CERN con-
firmed the existence of a few trapped modes with high
Q factors slightly below the TE;; mode cutoff frequency
(the lowest one in a circular waveguide). The prelimi-
nary results of the frequency shift measurements for these
trapped modes are in agreement with theory predictions
within 10%.
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